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Spiral magnetic order and pressure-induced
superconductivity in transition metal compounds
Yishu Wang1, Yejun Feng1,2, J.-G. Cheng3, W. Wu3, J.L. Luo3,4 & T.F. Rosenbaum1

Magnetic and superconducting ground states can compete, cooperate and coexist. MnP

provides a compelling and potentially generalizable example of a material where

superconductivity and magnetism may be intertwined. Using a synchrotron-based

non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and

trace its pressure evolution towards superconducting order via measurements in a diamond

anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum

phase transition as pressure increases the electron kinetic energy. Spins remain local in the

disordered phase, and the promotion of superconductivity is likely to emerge from an

enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of

phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d

transition metal compounds in the MnP family, the magnetic ground state switches

between antiferromagnet and ferromagnet, providing an additional tuning parameter in

probing spin-fluctuation-induced superconductivity.
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F
rom the lodestone-based compass to modern theories of
phase transitions1, magnetic materials have played an
outsized role in revealing the shape of the world around us.

The similarly venerable field of superconductivity serves as a
prime example of emergent, collective behaviour in nature, with
raised hopes of technological import with the discovery of
exotic superconducting order in the cuprates. Magnetism and
superconductivity often compete for preeminence as a material’s
ground state, but in the right circumstances the fluctuating remains
of magnetic order can induce superconducting pairing. The
intertwining of the two on the microscopic level, independent of
lattice excitations, is especially pronounced in heavy fermion
compounds, rare earth cuprates and iron pnictides.

Here we point out that for a helical arrangement of localized
spins, a variable spiral period could provide a unique tuning
process from ferromagnetic to antiferromagnetic ground state in
the long and short wavelength limits, respectively. Such chemical
or pressure adjustable helical order naturally provides the
possibility for continuous tuning between ferromagnetically and
antiferromagnetically mediated superconductivity. At the same
time, phonon-mediated superconductivity is suppressed because of
the local ferromagnetic spin configuration2 in the low-frequency
spiral fluctuation modes.

The recent discovery of a superconducting phase in the
transition metal compound MnP (ref. 3) opens the possibility of
investigating this scenario. MnP possesses a complex pressure–
temperature (P–T) phase diagram3. At ambient pressure, there
is helical spin order below the Néel temperature, TN¼ 50 K, with
a wave vector Q¼ (0.117, 0, 0) (ref. 4). Under pressure, the helical
order is quickly replaced by ferromagnetism at B1 GPa, and
another magnetic state, assumed to be antiferromagnetic3,
emerges for P42 GPa. Superconductivity appears after the
high-pressure magnetic phase is suppressed at PB7 GPa
(ref. 3). The spin structure in the high-pressure magnetic
phase remains unsettled, and is under active exploration by
both X-ray and neutron5 magnetic diffraction techniques.

We employ synchrotron-based magnetic X-ray diffraction
(see ‘Methods’ section) to investigate the high-pressure magnetic
phases in MnP (ref. 3). This sensitive probe, suitable for
0.0002 mm3 single crystal volumes and diamond anvil cell
techniques, directly reveals a reduced moment, incommensurate
spin state at high pressure proximate to the superconducting
state. This new magnetic order is most likely a magnetic helix
with a tightened pitch in comparison to that at ambient pressure
where superconductivity is absent. The extant data correlating
magnetic pitch length and superconductivity is sparse but
suggestive in the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family3,4,6–19

and, as discussed in detail below, we suggest this family
of spiral magnets as a new venue for tunable, spin-fluctuation-
mediated superconductivity.

Results
High-pressure spiral antiferromagnetic order. We performed
non-resonant single crystal X-ray magnetic diffraction under
pressure (see ‘Methods’ section)20–24 to elucidate the cascade of
magnetic states in the P–T phase diagram of MnP (Fig. 1) and
their relation to superconductivity. We discover helical magnetic
order with Q0B(0.25, 0, 0) presaging the high-pressure
superconductor (Fig. 2). We observe a pair of superlattice peaks
in mirror symmetry to the lattice order at three pressures, 3.17,
5.28 and 6.43 GPa, but absent at P¼ 8.99 and 10.4 GPa. These
diffraction peaks are always of single crystal nature (Fig. 3) and
their pressure evolution is commensurate to that of the a axis.
Here we adopt the Pbnm space group setting for MnP with
a4b4c (ref. 4). The low transferred momentum of (1�Q0, 0, 0)

rules out diffraction from integer lattice orders from both
MnP and other components of the high-pressure cell (diamond
and Ag manometer)21–24. The peak intensities lie in the range
of 1–4� 10� 8 relative to the (2, 0, 0) lattice intensity, which are
comparable with the estimate of non-resonant magnetic
diffraction intensities (see ‘Methods’ section) and the observed
diffraction signal of the low-pressure helical order under the same
experimental condition (Fig. 2a). It is known that spin order can
induce higher harmonics25,26. However, we did not observe a
diffraction peak at (1�Q0/2, 0, 0) with commensurate sensitivity
(Fig. 4). This implies that our observed pair of peaks represents
the primary wave describing the spin order. We did not observe
diffraction intensity at (1� 2Q0, 0, 0), thereby ruling out a strong
charge harmonic to the magnetic order.

Our limited number of observed diffraction orders and the lack
of a full azimuthal study because of constrained high-pressure cell
geometry make it insufficient to fully refine the high-pressure
spin structure. However, in our diffraction geometry, the
non-resonant magnetic cross section for orders along the
(H, 0, 0) direction is only sensitive to magnetic moments
projected out of the vertical diffraction plane and transverse to
the wave vector Q0 (see ‘Methods’ section). With spin moments
localized in Mn (see below) and an incommensurate wave vector
in MnP, the magnetic order is not likely to be of a collinear,
amplitude-modulated type. Thus it is reasonable to identify
the magnetism in MnP as helical order with tightened pitch
(Ha-II, Fig. 1 inset). This provides a consistent perspective on all
three spin structures (Ha-I, FM and Ha-II). The spiral magnetism
develops with a varying twist angle between neighbouring
spin pairs along the wave vector direction, a subtle result due
to pressure-dependent, competing exchange constants
from multiple close neighbours in an anisotropic lattice27. By
contrast, a recent nonpolarized neutron diffraction study at

0 2 4 6 8 10
0

100

200

300

P (GPa)

T
 (

K
)

FM

SC

PM
Ha-II

Ha-I

FM

Ha-II

20 × Tc

b a0

a

c

Ha-I

Figure 1 | Magnetic phases of MnP. The P–T phase diagram includes

ferromagnetism (FM), a double-helical order (Ha-I) at low pressure4, a new

helical order (Ha-II) discovered at high pressure in the current work,

superconductivity (SC) and paramagnetism (PM). Phase boundary data is

adapted from ref. 3 (open circles) with a reduction of pressure scale by a

factor of 1.12 to match our X-ray measured Ha-II phase boundary at 4 K

(filled circle). Also marked are (P, T) positions where the helical order was

observed or proved null through magnetic scattering (filled squares) and

where the lattice parameters are measured (crosses). The presence of

multiple ferromagnetic phases44 is not distinguished here for clarity. (Inset)

schematics of spin structures of three magnetic ground states, presented in

a sequence of ascending pressure. The n-glide plane constraint between

two helical orders in Ha-I is broken in the Ha-II phase.
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P¼ 3.8 GPa (ref. 5) suggests spiral order along the shortest axis, b,
in the Pnma space group. This result is surprising since for all
other (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family members (Table 1,
refs 4,6–19) the spiral order exists along either of the longer axes,
a or c, in the Pnma space group setting.

Lattice evolution under pressure and magnetostriction. The
boundary of the magnetic phase is determined most accurately by
the pressure evolution of the lattice. Single crystal refinement of
five to six Bragg orders of MnP at each pressure indicates that the
lattice structure remains in the orthorhombic phase to 10.4 GPa.
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Figure 2 | X-ray diffraction evidence of helical order in MnP. (a) Raw scans around (1, 1, 0) order at ambient pressure and T¼4 K, showing

both the lattice Bragg peak and a pair of non-resonant magnetic peaks associated with the helical spin order Ha-I. Solid lines are guides to the eye.

(b–d) Longitudinal (y/2y) line shapes of (2, 0, 0) lattice, and (1±Q0, 0, 0) helical magnetic order, measured at T¼4 K. We set a4b4c in the Pbnm space

group for the lattice4. Lattice line shapes are instrument resolution limited for the whole pressure range, and can be fit to a Pseudo-Voigt form with a lattice

coherence length exceeding 1,500 Å. The magnetic peaks are significantly broadened, indicating a shorter correlation length of the helical spin order from

B310 Å at 3.2 GPa to B70 Å at 6.4 GPa, about three times the pitch length of 24 Å. All magnetic peaks are fit with a Lorentzian form on a sloped

background, which could be attributed to influence from spin fluctuations in the ordered phase. However, our counting statistics are not sufficient to make a

distinction from a Lorentzian-squared form, which results from disorder pinning45. The reduced background benefits from the use of a pair of wide-angle

perforated diamond anvils22,24. Vertical dashed lines mark the commensurate (0.75, 0, 0) and (1.25, 0, 0) positions. Our instrument resolution is fine

enough to indicate that the observed magnetic pairs are mirror symmetric to the (1, 0, 0) order, but not commensurate. The presence of mirroring peaks

around (1, 0, 0) indicates the n-glide plane constraint is broken for the spin arrangement at high pressure 4, although the (1, 0, 0) lattice order is still

forbidden. (e) Above Pc¼6.7 GPa, magnetic diffraction is no longer observed in longitudinal scans at same positions of b–d. Vertical error bars represent 1s
s.d. counting statistics.
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Longitudinal scans of lattice orders such as (2, 0, 0), (0, 2, 1),
(2, 2, 0) and (2, 2, 2), showing instrument resolution limited
profiles with no noticeable peak splitting, support this conclusion.
All three lattice constants evolve nonlinearly at low pressure but
linearly at high pressure, with the crossover defining the critical
pressure, Pc¼ 6.7±0.2 GPa (Fig. 5), consistent with the range

where magnetic diffraction was observed directly. The
lattice changes continuously under pressure to a sensitivity
level of |Dl|/lB1� 10� 3 (Fig. 5). The orthorhombic structure
of MnP is considered to be a distortion from the hexagonal
structure of NiAs (refs 9,15), as the two symmetries can evolve
continuously across the ratio a/c¼ 1.732. Under pressure, the
orthorhombic distortion in MnP, measured by a/c, keeps
increasing from 1.85 to 1.98 and moves away from the
hexagonal symmetry. While helical order in both MnSi and
CrAs are suppressed by pressure through a clear first-order
quantum phase transition17,18,28, the quantum phase transition in
MnP at Pc is isostructural and could be continuous.

The lattice evolution with pressure indicates a significant
magnetostriction, which is common to many 3d and rare-earth
magnetic compounds29,30. Here in MnP, magnetostriction
can be extracted from Dc and Da of the lattice and scaled to
the magnetic phase boundary of either the Curie or Néel
temperatures, TC,N, as Dc/cBDa/aBTC, N (Fig. 5c), regardless of
whether there is underlying ferromagnetic or antiferromagnetic
order. Since the staggered magnetic moment hmi is directly
related to the magnetostriction, both Dl and hmi vanish at the
quantum phase transition. Beyond Pc, an energy density of 7 GPa
distributed over eight valence electrons in the P 3p and Mn 3d
orbitals31 increases the electron kinetic energy t by B15 meV per
electron, comparable to the magnetic exchange constants
J (2.5–11 meV, ref. 32). An increasing t/J ratio reduces the
ordered moment, hmi, and eventually destabilizes the magnetism.
While hmi drops to zero at a quantum critical point, the fate of
individual local moments remains of high interest, as exemplified
in heavy fermion materials33.

Local moments and fluctuation modes. Spins in MnP are deep
in the local limit at ambient pressure given a Rhodes–Wohlfarth
ratio of 2.2 (Fig. 6). The 15 meV per electron increase in
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kinetic energy sufficient to destabilize the magnetic order is not
enough to fully delocalize the 3d moments, considering their
0.20 eV bandwidth31. Therefore, MnP is a system with local
moments surviving beyond the quantum critical point, and spin
fluctuations in the disordered state naturally raise special interest
about magnetically driven superconductivity.

In the disordered phase, the predominant spin fluctuation
modes likely are still dictated by the nearby magnetic instabil-
ity33–35. In MnSi, helical fluctuations in the form of spiral/helix
paramagnons were observed for T4TC despite a weak first order
transition. Those fluctuations centre at a wave vector similar in
magnitude to the ordering wave vector Q, but with a random
direction35, presumably because of the short range
Dzyaloshinskii–Moriya interaction in a cubic lattice symmetry.
In MnP and CrAs, the lattice anisotropy likely confines wave
vector directions of magnetic fluctuations. The pressure evolution
of Q in CrAs (ref. 19) is constant up to PcB0.65 GPa
(refs 17–19,36). Interpreting its behaviour for P4Pc (ref. 36) is
clouded by a strong first-order phase transition and a highly
strained sample condition (lattice mismatch of several per cent)
in the phase coexistence region. With no significant evolution of
Q in the ordered phase under pressure (Fig. 2)19, the disordered
phases of MnP and CrAs should possess spin fluctuations
dominated by the magnetic instability in the ordered phase,

that is, spiral modes centred at QB(0.25, 0, 0) for MnP and
(0.36, 0, 0) for CrAs.

Discussion
Fluctuation modes in spiral magnets are of particular interest in
terms of the competition between spin and lattice (phonon)
fluctuations and their connection to superconducting pairing
of s, p, or d character. Consider a helical fluctuation at a finite
wavelength. By contrast to the usual antiferromagnet, spins of
nearest neighbours along the wave vector Q direction share a
large ferromagnetic projection. These ferromagnetic spin
fluctuations in the low frequency limit would suppress phonon-
mediated superconductivity due to on-site pairing of itinerant
electrons2, emphasizing magnetically mediated coupling channels.
Furthermore, varying the pitch of the helical order provides a
continuous tuning of local ferromagnetic order versus intermediate-
range antiferromagnetic order, thus tilting the competition between
the two types of magnetically mediated superconductivities.

The spin interaction between two itinerant electrons is an
oscillating function in real space, with attractive regions at
distance (nþ 1/2)l (where n is an integer). The strongest
interaction happens at a half pitch length l/2 of the fluctuating
spiral modes (Fig. 7a), which is about 12 Å in MnP. This is similar

Table 1 | Spiral orders in the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family.

Compounds TN(K) Q (r.l.u.) Helical axis: Reference

Mn0.65Cr0.35As 195 0.071 a 13

Mn0.7V0.3As 142 0.08 a 8

Mn0.7Cr0.3As 202 0.088 a 13

Mn0.75Cr0.25As 205 0.097 a 13

MnAs0.925 P0.075 232 0.10 a 11

Mn0.95Co0.05P 53 0.101 c 14

Mn0.9Co0.1P 49 0.107 c 14

Mn0.95V0.05P 107 0.109 c 14

Mn0.8Co0.2P 70 0.111 c 14

Mn0.9Cr0.1P 50 0.112 c 14

Mn0.95Fe0.05P 62 0.113 c 14

Mn0.95Cr0.05P 53 0.116 c 14

Mn0.9V0.1As 206 0.116 a 8

MnP (low pressure) 50 0.117 c 4

Mn0.8Cr0.2As 208 0.120 a 13

Mn0.95V0.05As 200 0.128 a 8

Mn0.9Cr0.1As 210 0.133 a 13

Mn0.95Fe0.05As 211 0.142 a 10

Mn0.9Fe0.1P 172 0.145 c 14

Mn0.9V0.1P 152 0.151 c 14

Mn0.95Ni0.05As 202 0.155 a 12

Mn0.95Co0.05As 196 0.166 a 9

Mn0.9Co0.1As 174 0.184 a 9

Mn0.85V0.15P 141 0.189 c 14

Mn0.8V0.2P 113 0.194 c 14

FeP 125 0.20 c 6

Mn0.85Co0.15As 152 0.209 a 9

Mn0.8Fe0.2P 142 0.210 c 14

MnP (high pressure) 0.250 c Current work
Mn0.6Cr0.4As 232 0.252 c 13

Mn0.72Fe0.28P 173 0.258 c 14

CrAs 265 0.356 c 19

Cr0.98Ni0.02As 202 0.357 c 12

FeAs 70 0.395 c 16

CrAs0.86Sb0.14 340 0.40 c 7

CrAs0.72Sb0.28 340 0.40 c 7

CrAs0.66Sb0.34 310 0.40 c 7

CrAs0.5Sb0.5 175 0.40 c 7

Organized by antiferromagnetic Q-vector from 0.07 to 0.40 r.l.u. in ascending order, all helical orders propagate along either the a- or c-axes in the Pnma space group setting.
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to the antiferromagnetic fluctuation-mediated interaction in the
rare earth cuprates and the heavy fermion compounds37,38. There
is a relatively long interaction length between itinerant charge
carriers as compared with both the on-site interaction of the
phonon-mediated type37 and the nearest-neighbor resonant
valence bond type for underdoped cuprates39. On the other
hand, the coherence lengths of Cooper pairs are typically much
longer than interaction lengths in both phonon- and magnetically
mediated superconductors37,39 and for MnP, the superconducting
coherence length extends over 300 Å (ref. 3). This coherence length

is necessarily smaller than the mean free path of itinerant electrons,
thereby allowing the electron pair overlap to maintain phase
coherence. The MnP samples we used have a residual resistance
ratio of B1,000 at ambient pressure3, close to the clean limit. The
issue of pairing symmetry is more tenuous, but the model of helical
magnets allows certain predictions. The interaction of paring
itinerant electrons at a distance r¼ (nþ 1/2)l along the wave
vector Q direction of helical spin fluctuations (Fig. 7a) mandates a
preferred axial direction and suggests that the superconductivity
might be of the singlet dz2 type, especially in light of the
low-symmetry lattice structures of MnP and CrAs.

While spiral fluctuations suppress phonon-mediated super-
conductivity and enhance the coupling channels for the magnetic
interactions, helical fluctuations of different pitches provide the
means to switch from ferromagnetic to antiferromagnetic
character. With increasing spiral wavelength, the interaction
strength of the antiferromagnetic coupling is reduced over an
elongated r (ref. 32). Moreover, an increased spiral wavelength
reduces the turning angle between neighbouring spins and thereby
heightens the local ferromagnetic spin density. By varying the
pitch, it is possible to tune both the ferromagnetic and
antiferromagnetic spin fluctuations. Our focus on local moment
helical order complements itinerant models of continuous tuning
by band filling from ferromagnetic to antiferromagnetic order with
a concomitant switch between magnetically mediated
superconductivities of different symmetries40. Through the
comparison of the cuprates and Sr2RuO4, it appears that
ferromagnetically mediated superconductivity typically has an
orders of magnitude lower transition temperature than its
antiferromagnetic analogue of the same dimensionality40.

The dimensionality of the spin fluctuations is another interesting
issue. The helical order in 3d compounds can be compared with
incommensurate antiferromagnetic order in heavy fermion
materials like CeCu6� xAux (ref. 33), where spin fluctuations
with two-dimensional character were observed around the
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ordering wave vector Q (ref. 34). Even though the effective low
dimensionality enhances the spin fluctuations, the extremely
low-magnetic coupling strength in CeCu6� xAux (ref. 33)
suppresses the possible magnetically mediated superconductivity
below experimental sensitivity. Spin fluctuations in MnP are likely
three-dimensional (3D) judging from the T3/2 dependence of the
resistivity3, but they are matched with a large magnetic coupling
strength32 and bandwidth31, so the superconducting transition
temperature, Tc, could still be measurable even at a level of
TN/1,000. For 3D helical magnets such as MnP and CrAs with
Tc¼ 1–2 K (Fig. 7b), the corresponding ferromagnetic type could
be below the lowest range of temperatures measured to date.

Although experimental evidence is still limited, the effects of a
variable spiral pitch are suggestive. We illustrate the trends in
Fig. 7b for the series MnSi, MnP and CrAs as a function of their
different magnetic wave vectors. With a small spiral wave vector of
(0.017, 0.017, 0.017)35, MnSi does not superconduct under
pressure down to at least 10 mK (ref. 28), although the lack of
an inversion centre could complicate the symmetry properties of a
superconducting state. For MnP at low pressure, the helical order
with a wave vector of 0.117 r.l.u. (ref. 4) was replaced by
ferromagnetic order at PB1 GPa, and no superconductivity was
observed down to 350 mK (ref. 3). On the other hand, both MnP at
high pressure (0.25 r.l.u.) and CrAs (0.36 r.l.u.) have relatively large
wave vectors (short pitches) and demonstrate superconducting
ground states once the helical order is suppressed by pressure18,19.

We list in Table 1 38 different intermetallic compounds
with magnetic pitch varying nearly continuously from 0.07
to 0.40 r.l.u. Most of them have not been examined under
pressure, neither to map the evolution of their magnetism nor to
search for superconductivity. With such studies, the 3d helical
magnets of the (V/Cr/Mn/Fe/Co/Ni)(P/As/Sb) family3,4,6–19

present manifest opportunities to further our understanding of
the linkage between magnetism and unconventional
superconductivity.

Methods
Non-resonant X-ray magnetic diffraction. The technique of non-resonant X-ray
magnetic diffraction has been well established at synchrotron-based X-ray
sources29,30,41–43. Non-resonant single crystal X-ray magnetic diffraction under
pressure using 20.000 keV X-rays was carried out at beamline 4-ID-D of the
Advanced Photon Source20–24. The X-ray energy is calibrated to the K-edge of the
element Molybdenum to within a precision of 0.5 eV. The bandwidth of incident
X-rays is B2.7 eV full-width at half-maximum, given by the use of Si (1,1,1) crystals
as X-ray monochromators. Diffraction was carried out in the vertical scattering
plane, with X-rays predominantly (499%) polarized linearly in the horizontal
direction perpendicular to the diffraction plane.

MnP is a 3d transition metal compound with low local symmetry at the Mn sites.
Thus it is reasonable to assume that the orbital moments are quenched in this
system. Spins localized at Mn sites, as suggested by our measured Rhodes–Wohlfarth
ratio, are the major source of magnetism. Under the non-resonant condition and our
vertical diffraction geometry, the cross section of X-ray magnetic diffraction is41,

ds
dO
¼ e2

mc2

� �2 ‘o
mc2

� �2

S2sinð2yÞ½ �2 þ 4sin4ðyÞ S1cos yð Þþ S3sin yð Þ½ �2
� �

; ð1Þ

a

λ/2

e– e–

Q (r.l.u.)

T
c 

(K
)

0.10 0.2 0.3 0.4 0.5

101

100
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10–3
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a

b

Figure 7 | Variable helical pitch length as a tuning method for magnetically mediated superconductivity. (a) Schematic of a superconducting electron

pair coupled through helical spin order in a projected planar view. The two sites of itinerant electron coupling are separated along the helical order by a half

wavelength (l/2), suggesting the possibility of singlet dz2 -wave pairing. This scenario competes with superconductivity of a ferromagnetic type, while the

nearly parallel local spin configuration always suppresses phonon-mediated superconductivity at a single site2. (b) Superconducting transition temperature

Tc plotted as a function of helical wave vector Q in selected 3d intermetallic compounds. Data for MnSi (refs 28,35), MnP (refs 3,4) and CrAs (refs 17–19)

are collected from either the literature or current work. Red solid circles represent observed superconducting transitions, which only exist in pressure-

induced disordered phases beyond the helical order, and are likely antiferromagnetically mediated. The horizontal bars of the downward arrows represent

the lower bounds of null searches for superconductivity. Ferromagnetically mediated superconductivity is expected to be at a lower temperature than its

antiferromagnetic counterpart38,40. The pitch of the helical order represents a potential tuning method between ferromagnetically (blue region) and

antiferromagnetically (red region) mediated superconductivity.
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where e and m are the electron mass and charge, respectively, :o is the X-ray energy,
2y is the Bragg diffraction angle and S1,2,3 are projections of the reciprocal space spin
density with S2 out of the diffraction plane and S1,3 in plane41. However, the
diffraction 2y angles are all small (Fig. 3) given the need to use hard (20 keV)
X-rays to penetrate the diamond anvil cell. Expanding the scattering cross section

by powers of sin2(y)B0.005, it simplifies to ds
dO ¼ e2

mc2

� �2 ‘o
mc2

� �2
S2sinð2yÞ½ �2,

where only the S2 perpendicular spin projection remains42,43. In our measurements
(Fig. 2), the diffraction wave vectors (1±Q0 , 0, 0) are parallel to the magnetic order
vector (Q0 , 0, 0). Hence the observed diffraction signals indicate a transverse
component of antiferromagnetic order, ruling out a purely longitudinal spin wave.
A spiral form is the simplest model that is consistent with our data, since localized
spins also rule out an amplitude-modulated, collinear wave form.

The magnetic diffraction cross section, smag, can be compared with

the charge diffraction cross section, scharge, as roughly: smag=scharge ’ ‘o
mc2

� �2 fm

f

� 	2

S2sinð2yÞ=N½ �2, where N is the total number of electrons per atom that contribute
to the Thompson scattering amplitude, and fm, and f are magnetic and charge form
factors, respectively. With N¼ 25 for Mn, and a projected spin moment s>
about 1:3=

ffiffiffi
2
p

mB; smag=scharge is estimated to be 2–5� 10� 8 for I(1±Q0 , 0, 0)/I(2, 0, 0).
This value becomes smaller as the ordered moment, hmi, decreases with
increasing pressure.

Although the non-resonant X-ray magnetic diffraction signals are typically
weak, the feasibility of this technique has been demonstrated under high
pressure20,22–24. With the development of wide-angle perforated diamond
anvils22,24, it is possible to cleanly detect magnetic order with spin moments as low
as 0.3 mB under pressure, with the sample volume spatially divided into six
magnetic domains24. With only 0.9 mm thick diamonds and a 0.1 mm thick low-Z
glassy pressure medium (methanol:ethanol 4:1 mixture) in the X-ray scattering
path, in addition to the sample, the background was minimized and is devoid of
sharp features across reciprocal space.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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